Criado em quarta-feira, 08 de Outubro de 2008 20:04 Última atualização em Quinta, 14 Março 2013 01:29 Escrito por Batuhan Osmanoglu Hits: 41506 Moving Average Em Matlab Muitas vezes eu me encontro na necessidade de calcular a média dos dados que tenho para reduzir o ruído um pouco pouco. Eu escrevi funções de casal para fazer exatamente o que eu quero, mas matlabs construído em função de filtro funciona muito bem também. Aqui Ill escrever sobre 1D e 2D média de dados. 1D filtro pode ser realizado usando a função de filtro. A função de filtro requer pelo menos três parâmetros de entrada: o coeficiente de numerador para o filtro (b), o coeficiente do denominador para o filtro (a) e os dados (X), é claro. Um filtro de média em execução pode ser definido simplesmente por: Para dados 2D, podemos usar a função Matlabs filter2. Para obter mais informações sobre como o filtro funciona, você pode digitar: Aqui está uma implementação rápida e suja de um filtro de média móvel 16 por 16. Primeiro precisamos definir o filtro. Uma vez que tudo o que queremos é a contribuição igual de todos os vizinhos, podemos apenas usar a função uns. Nós dividimos tudo com 256 (1616) desde que nós não queremos mudar o nível geral (amplitude) do sinal. Para aplicar o filtro podemos simplesmente dizer o seguinte Abaixo estão os resultados para a fase de um interferograma SAR. Neste caso Range está no eixo Y e Azimuth é mapeado no eixo X. O filtro foi 4 pixels de largura em Range e 16 pixels de largura em Azimuth. Ive tem um vetor e eu quero calcular a média móvel dele (usando uma janela de largura 5). Por exemplo, se o vetor em questão for 1,2,3,4,5,6,7,8. Então a primeira entrada do vetor resultante deve ser a soma de todas as entradas em 1,2,3,4,5 (ou seja, 15) a segunda entrada do vetor resultante deve ser a soma de todas as entradas em 2,3,4, 5,6 (ie 20) etc. No final, o vector resultante deve ser 15,20,25,30. Como posso fazer isso? A função conv está bem no seu beco: Três respostas, três métodos diferentes. Aqui está um benchmark rápido (diferentes tamanhos de entrada, largura de janela fixa de 5) usando timeit sinta-se livre para picar buracos nele (nos comentários), se você acha que precisa ser refinado. Conv surge como a abordagem mais rápida é cerca de duas vezes mais rápido que a aproximação moedas (usando filtro). E cerca de quatro vezes mais rápido que Luis Mendos abordagem (usando cumsum). Aqui está outro benchmark (tamanho de entrada fixo de 1e4. Largura de janela diferente). Aqui, Luis Mendos cumsum abordagem surge como o vencedor claro, porque a sua complexidade é principalmente governada pelo comprimento da entrada e é insensível à largura da janela. Conclusão Para resumir, você deve usar a abordagem conv se sua janela é relativamente pequena, use a abordagem cumsum se sua janela é relativamente grande. Código (para benchmarks) Preciso calcular uma média móvel em uma série de dados, dentro de um loop for. Eu tenho que obter a média móvel em N9 dias. O array Im computing in é 4 séries de 365 valores (M), que são valores médios de outro conjunto de dados. Eu quero traçar os valores médios dos meus dados com a média móvel em um gráfico. Eu pesquisei um pouco sobre as médias móveis eo comando conv e encontrei algo que eu tentei implementar no meu código. Então, basicamente, eu computo o meu médio e plotá-lo com uma média móvel (errada). Eu escolhi o valor de wts fora do site mathworks, de modo que está incorreto. (Fonte: mathworks. nlhelpeconmoving-average-trend-estimation. html) Meu problema, porém, é que eu não entendo o que este wts é. Alguém poderia explicar Se tem algo a ver com os pesos dos valores: que é inválido neste caso. Todos os valores são ponderados da mesma forma. E se eu estou fazendo isso inteiramente errado, eu poderia obter alguma ajuda com ele Meus mais sinceros agradecimentos. September 23 14 at 19:05 Usando conv é uma excelente maneira de implementar uma média móvel. No código que você está usando, wts é o quanto você está pesando cada valor (como você adivinhou). A soma desse vetor deve ser sempre igual a um. Se você deseja pesar cada valor uniformemente e fazer um filtro de tamanho N em movimento, então você gostaria de fazer Usando o argumento válido em conv resultará em ter menos valores em Ms do que você tem em M. Use o mesmo se você não se importar com os efeitos de Zero preenchimento. Se você tiver a caixa de ferramentas de processamento de sinal, você pode usar o cconv se quiser experimentar uma média móvel circular. Algo como Você deve ler a documentação conv e cconv para obter mais informações se você já não. Você pode usar o filtro para encontrar uma média em execução sem usar um loop for. Este exemplo encontra a média em execução de um vetor de 16 elementos, usando um tamanho de janela de 5. 2) suave como parte da Caixa de Ferramentas de Ajuste de Curva (que está disponível na maioria dos casos) yy suave (y) suaviza os dados no vetor de coluna Y usando um filtro de média móvel. Os resultados são retornados no vetor de coluna yy. O intervalo padrão para a média móvel é 5.Moving Average Filter (filtro MA) Loading. O filtro de média móvel é um filtro simples Low Pass FIR (Finite Impulse Response) comumente usado para alisar uma matriz de datasign amostrada. Ele toma M amostras de entrada de cada vez e pegue a média dessas M-amostras e produz um único ponto de saída. É uma estrutura de LPF (Low Pass Filter) muito simples que vem à mão para cientistas e engenheiros para filtrar componentes indesejados ruidosos dos dados pretendidos. À medida que o comprimento do filtro aumenta (o parâmetro M) a lisura da saída aumenta, enquanto que as transições nítidas nos dados são tornadas cada vez mais sem corte. Isto implica que este filtro tem uma excelente resposta no domínio do tempo mas uma resposta de frequência pobre. O filtro MA executa três funções importantes: 1) Toma M pontos de entrada, calcula a média desses pontos M e produz um único ponto de saída 2) Devido aos cálculos computacionais envolvidos. O filtro introduz uma quantidade definida de atraso 3) O filtro age como um Filtro de Passagem Baixa (com fraca resposta de domínio de freqüência e uma boa resposta de domínio de tempo). Código Matlab: O código matlab seguinte simula a resposta no domínio do tempo de um filtro M-point Moving Average e também traça a resposta de freqüência para vários comprimentos de filtro. Time Domain Response: No primeiro gráfico, temos a entrada que está entrando no filtro de média móvel. A entrada é ruidosa e nosso objetivo é reduzir o ruído. A figura seguinte é a resposta de saída de um filtro de média móvel de 3 pontos. Pode-se deduzir da figura que o filtro de média móvel de 3 pontos não fez muito na filtragem do ruído. Nós aumentamos as torneiras de filtro para 51 pontos e podemos ver que o ruído na saída reduziu muito, o que é descrito na próxima figura. Nós aumentamos as derivações para 101 e 501 e podemos observar que mesmo que o ruído seja quase zero, as transições são drasticamente apagadas (observe a inclinação de cada lado do sinal e compare-as com a transição ideal da parede de tijolo em Nossa entrada). Resposta de Freqüência: A partir da resposta de freqüência pode-se afirmar que o roll-off é muito lento ea atenuação da banda de parada não é boa. Dada esta atenuação de banda de parada, claramente, o filtro de média móvel não pode separar uma banda de frequências de outra. Como sabemos, um bom desempenho no domínio do tempo resulta em fraco desempenho no domínio da freqüência e vice-versa. Em suma, a média móvel é um filtro de suavização excepcionalmente bom (a ação no domínio do tempo), mas um filtro de passa-baixa excepcionalmente ruim (a ação no domínio da freqüência) Links externos: Livros recomendados:
No comments:
Post a Comment